Все комментарии участника: Анатолий

Всего: 2895 комментариев
12.06.2013 22:22 | Фракталы!
ДЕРЕВО ФЕЙГЕНБАУМА И МНОЖЕСТВО МАНДЕЛЬБРОТА Рис 3. Если вы когда-либо видели формулу множетсва Мандельброта z=z2 + x, вы могли бы заметить схожесть между этой формулой и самой простой из формул для построения дерева Фейгенбаума x2 – r. И это действительно так. Сходство существует. Но фейгенбаумово дерево растет в другую сторону. Измените формулу Фейгенбаума на x2 + r и вы увидите сходство. Что касается множества Мандельброта, вам нужно смотреть вдоль горизонтальной оси, так как это единственная позиция в ... читать далее »
11.06.2013 19:44 | Фракталы!
ГЕНЕРАЦИЯ СЛУЧАЙНЫХ ЧИСЕЛ Рис 2. Посмотрите на распределение точек где-нибудь на правом краю дерева Фейгенбаума (Свойства -> Интервал -> Отрезок Псевдохаоса в программе Lt Bifurcator) Видите, они кажутся очень случайными. Так что кажется вполне оправданной идея использования этого для генерации случайных чисел. Все что для этого может потребоваться — это запустить формулу x = (1 + r)x – rx2 или какую-либо ей подобную и использовать последнее вычисленное значение каждый раз, когда требуется случайное ... читать далее »
10.06.2013 14:34 | Фракталы!
АТТРАКТОР И КОНСТАНТА ФЕЙГЕНБАУМА АТТРАКТОР ФЕЙГЕНБАУМА В отличие от константы Фейгенбаума, это число не является универсальным. Значение этого аттрактора зависит от того, какая используется формула. Для формулы, используемой в Lt Bifurcator x = (1 + r)x – rxІ графически можно найти значение приблизительно равное 2.56. Число представляет значение параметра, при котором график первый раз проходит бесконечное количество бифуркаций. Это означает, что аттрактор Фейгенбаума — это хаотический аттрактор, т.к. ... читать далее »
08.06.2013 18:04 | Фракталы!
ПОЧЕМУ СИСТЕМА СТАНОВИТСЯ НЕПРЕДСКАЗУЕМОЙ? Объяснение этому явлению дать не просто. Для каждой точки параметра r (по оси абсцисс), для функции x возможны следующие варианты. У функции могут быть: периодическая орбита, т.е. она периодически принимает одно или несколько значений, что происходит с фракталом, приведенным здесь в качестве иллюстрации на сегменте 0 < r < 2.57 хаотическая орбита, т.е. она принимает такое большое количество различных значений при итерационном процессе, что невозможно найти ... читать далее »
07.06.2013 18:29 | Фракталы!
БИФУРКАЦИИ В МОДЕЛЯХ ПОПУЛЯЦИЙ Чудо фрактальной геометрии заключается в том, что чрезвычайно сложные формы могут получаться из таких простых процессов генерирования. Еще один сюрприз преподносит нам учение о динамических системах: такие простые, детерминированные уравнения могут порождать такое хаотическое поведение, при котором система никогда не возвращается в стабильное состояние и не проявляется никакой закономерности. Часто такие системы ведут себя вполне нормально до некоторого определенного ... читать далее »
06.06.2013 17:47 | Фракталы!
МНОЖЕСТВО ЖУЛИА Удивительно, но множества Жулиа образуются по той же самой формуле, что и множество Мандельброта. Множество Жулиа было изобретено французским математиком Гастоном Жулиа, по имени которого и было названо множество. Первый вопрос, возникающий после визуального знакомства с множествами Мандельброта и Жулиа это “если оба фрактала сгенерированы по одной формуле, почему они такие разные?” Сначала посмотрите на картинки множества Жулиа. Достаточно странно, но существуют разные типы множеств Жулиа. ... читать далее »
06.06.2013 17:45 | Фракталы!
МНОЖЕСТВО МАНДЕЛЬБРОТА Множества Мандельброта и Жулиа, вероятно, два наиболее распространенных среди сложных фракталов. Их можно найти во многих научных журналах, обложках книг, открытках, и в компьютерных хранителях экрана. Множество Мандельброта, которое было построено Бенуа Мандельбротом, наверное первая ассоциация, возникающая у людей, когда они слышат слово фрактал. Этот фрактал, напоминающий чесальную машину с прикрепленными к ней пылающими древовидными и круглыми областями, генерируется простой ... читать далее »
05.06.2013 18:31 | Фракталы!
СЛОЖНЫЕ ФРАКТАЛЫ Большая часть встречающихся сегодня фракталов не являются детерминированными. Они не линейны и не собранны из повторяющихся геометрических форм. Такие фракталы называются сложными. ОБЩАЯ ХАРАКТЕРИСТИКА Фактически, если вы увеличите маленькую область любого сложного фрактала а затем проделаете то же самое с маленькой областью этой области, то эти два увеличения будут значительно отличаться друг от друга. Два изображения будут очень похожи в деталях, но они не будут полностью ... читать далее »
04.06.2013 17:15 | Фракталы!
ИНТЕГРАЦИЯ ДЕТЕРМИНИРОВАННЫХ ФРАКТАЛОВ И ХАОС Из рассмотренных примеров детерминистских фракталов можно увидеть, что они не проявляют никакого хаотического поведения и что они на самом деле очень даже предсказуемы. Как известно, теория хаоса использует фрактал для того, чтобы воссоздать или найти закономерности с целью предсказания поведения многих систем в природе, таких как, например, проблема миграции птиц. Теперь давайте посмотрим, как это в действительности происходит. Используя фрактал, называемый ... читать далее »
04.06.2013 17:11 | Фракталы!
ДВИЖЕНИЕ БИЛЛИАРДНОГО ШАРИКА Любой, кто когда либо брал в руки кий для бильярда, знает, что ключ к игре — точность. Малейшая ошибка в угле начального удара может быстро привести к огромной ошибке в положении шарика всего после нескольких столкновений. Эта чувствительность к начальным условиям называемая хаосом возникает непреодолимым барьером для любого, кто надеется предсказать или управлять траекторией движения шарика больше чем после шести или семи столкновений. И не стоит думать, что проблема ... читать далее »
03.06.2013 14:54 | Фракталы!
БРОУНОВСКОЕ ДВИЖЕНИЕ И ЕГО ПРИМЕНЕНИЯ Рис 2. Частотная диаграмма Броуновское движение — это, например, случайное и хаотическое движение частичек пыли, взвешенных в воде. Этот тип движения, возможно, является аспектом фрактальной геометрии, имеющий с наибольшее практическое использование. Случайное Броуновское движение производит частотную диаграмму, которая может быть использована для предсказания вещей, включающих большие количества данных и статистики. Хорошим примером являются цены на шерсть, которые ... читать далее »
03.06.2013 14:51 | Фракталы!
ПРИМЕНЕНИЕ ТЕОРИИ ХАОСА В РЕАЛЬНОМ МИРЕ При появлении новых теорий, все хотят узнать что же в них хорошего. Итак что хорошего в теории хаоса? Первое и самое важное — теория хаоса — это теория. А значит, что большая ее часть используется больше как научная основа, нежели как непосредственно применимое знание. Теория хаоса является очень хорошим средством взглянуть на события, происходящие в мире отлично от более традиционного четко детерминистического взгляда, который доминировал в науке со времен ... читать далее »
02.06.2013 19:58 | Фракталы!
Рассмотрим фракталы с другой стороны. ВВЕДЕНИЕ В ТЕОРИЮ ХАОСА ЧТО ТАКОЕ ТЕОРИЯ ХАОСА? Формально, теория хаоса определяется как учение о сложных нелинейных динамических системах. Под термином сложные это и понимается, а под термином нелинейные понимается рекурсия и алгоритмы из высшей математики, и, наконец, динамические — означает непостоянные и непериодические. Таким образом, теория хаоса это учение о постоянно изменяющихся сложных системах, основанное не математических концепциях рекурсии, в ... читать далее »
01.06.2013 17:47 | Фракталы!
3. Системы итерируемых функций Метод "Систем Итерируемых Функций" (Iterated Functions System - IFS) появился в середине 80-х годов как простое средство получения фрактальных структур. IFS представляет собой систему функций из некоторого фиксированного класса функций, отображающих одно многомерное множество на другое. Наиболее простая IFS состоит из аффинных преобразований плоскости: X' = A*X + B*Y + C Y' = D*X + E*Y + F В 1988 году известные американские специалисты в теории динамических систем и ... читать далее »
31.05.2013 17:56 | Фракталы!
2.2 Алгебраические фракталы Это самая крупная группа фракталов. Получают их с помощью нелинейных процессов в n-мерных пространствах. Наиболее изучены двухмерные процессы. Интерпретируя нелинейный итерационный процесс, как дискретную динамическую систему, можно пользоватся терминологией теории этих систем: фазовый портрет, установившийся процесс, аттрактор и т.д. Известно, что нелинейные динамические системы обладают несолькими устойчивыми состояниями. То состояние, в котором оказалась динамическая система ... читать далее »
 
© decoder.ru 2003 - 2020, создание портала - Vinchi Group & MySites
ЧИСТЫЙ ИНТЕРНЕТ - logoSlovo.RU