Основы теории графов, задача о Кенигсбергских мостах (Л. Эйлер)



Основы теории графов как математической науки заложил в 1736 г. Леонард Эйлер, рассматривая задачу о кенигсбергских мостах. Сегодня эта задача стала классической.

Бывший Кенигсберг (ныне Калининград) расположен на реке Прегель. В пределах города река омывает два острова. С берегов на острова были перекинуты мосты. Старые мосты не сохранились, но осталась карта города, где они изображены. Кенигсбергцы предлагали приезжим следующую задачу: пройти по всем мостам и вернуться в начальный пункт, причём на каждом мосту следовало побывать только один раз.




Проблема семи мостов Кёнигсберга

Проблема семи мостов Кёнигсберга или Задача о кёнигсбергских мостах (нем. Königsberger Brückenproblem) — старинная математическая задача, в которой спрашивалось, как можно пройти по всем семи мостам Кёнигсберга, не проходя ни по одному из них дважды. Впервые была решена в 1736 году немецким и русским математиком Леонардом Эйлером.

Издавна среди жителей Кёнигсберга была распространена такая загадка: как пройти по всем мостам (через реку Преголя), не проходя ни по одному из них дважды. Многие кёнигсбержцы пытались решить эту задачу как теоретически, так и практически, во время прогулок. Впрочем, доказать или опровергнуть возможность существования такого маршрута никто не мог.

В 1736 году задача о семи мостах заинтересовала выдающегося математика, члена Петербургской академии наук Леонарда Эйлера, о чём он написал в письме итальянскому математику и инженеру Мариони от 13 марта 1736 года. В этом письме Эйлер пишет о том, что он смог найти правило, пользуясь которым, легко определить, можно ли пройти по всем мостам, не проходя дважды ни по одному из них. Ответ был «нельзя».

Решение задачи по Леонарду Эйлеру

На упрощённой схеме части города (графе) мостам соответствуют линии (дуги графа), а частям города — точки соединения линий (вершины графа). В ходе рассуждений Эйлер пришёл к следующим выводам:

Число нечётных вершин (вершин, к которым ведёт нечётное число рёбер) графа должно быть чётно. Не может существовать граф, который имел бы нечётное число нечётных вершин.
Если все вершины графа чётные, то можно, не отрывая карандаша от бумаги, начертить граф, при этом можно начинать с любой вершины графа и завершить его в той же вершине.
Граф с более чем двумя нечётными вершинами невозможно начертить одним росчерком.
Граф кёнигсбергских мостов имел четыре (синим) нечётные вершины (то есть все), следовательно, невозможно пройти по всем мостам, не проходя ни по одному из них дважды



Созданная Эйлером теория графов нашла очень широкое применение в транспортных и коммуникационных системах (например, для изучения самих систем, составления оптимальных маршрутов доставки грузов или маршрутизации данных в Интернете).

Дальнейшая история мостов Кёнигсберга

В 1905 году был построен Императорский мост, который был впоследствии разрушен в ходе бомбардировки во время Второй мировой войны. Существует легенда о том, что этот мост был построен по приказу самого кайзера, который не смог решить задачу мостов Кёнигсберга и стал жертвой шутки, которую сыграли с ним учёные умы, присутствовавшие на светском приёме (если добавить восьмой мост, то задача становится разрешимой). На опорах Императорского моста в 2005 году был построен Юбилейный мост. На данный момент в Калининграде семь мостов, и граф, построенный на основе островов и мостов Калининграда, по-прежнему не имеет эйлерова пути.

Комментарии (3)

Всего: 3 комментария
  
#1 | Анатолий »» | 03.02.2014 12:37
  
3
В середине 19 в. появились работы, в которых при решении практических задач были получены результаты, относящиеся к теории графов (составление полной системы уравнений для токов и напряжений в электрической схеме)
2. В 20 в. задачи, связанные с графами, начали возникать не только в физике, химии, электротехнике биологии, экономике, социологии и т.д., но и в алгебре, теории вероятностей, теории чисел (наряду с термином «граф» употреблялись и другие термины, например, карта, комплекс, диаграмма, сеть, лабиринт)

Представляем вашему вниманию

Теория графов
и сетевое планирование


Можно посмотреть, можно скачать:

Сетевое планирование
  
#2 | Анатолий »» | 04.02.2014 14:41
  
0
Так же вы можете посмотреть (можно и скачать):



Теория графов



Первые задачи теории графов связаны с решением математических развлекательных задач и головоломок (задача о Кенигсбергских мостах, задача о расстановке ферзей на шахматной доске, задача о перевозках, задача о кругосветном путешествии). Одним из первых результатов в теории графов явился критерий существования обхода графа без повторений, полученный Леонардом Эйлером, при решении задачи о Кенигсбергских мостах.
Тема 3.1 Основные определения теории графов

Наглядное представление о графе можно получить, если представить себе некоторое множество точек плоскости Х, называемых вершинами, и множество направленных или ненаправленных отрезков М, соединяющих все или некоторые из вершин и называемых дугами. Математически граф определяется как пара множеств (Х, Г).


Теория Графов
  
#3 | Анатолий »» | 04.02.2014 14:44
  
2
Среди студентов есть история:

Молодой преподаватель на лекции:

-- Итак у нас сегодня новая тема: "Теория графов"
Граф - титул в средневековой Европе...
Вы что это серьезно записываете?
Добавлять комментарии могут только
зарегистрированные пользователи!
 
Имя или номер: Пароль:
Регистрация » Забыли пароль?
 
© decoder.ru 2003 - 2020, создание портала - Vinchi Group & MySites
ЧИСТЫЙ ИНТЕРНЕТ - logoSlovo.RU