Тригонометрические функции любого угла

Чтобы построить всю тригонометрию, законы которой были бы справедливы для любых углов ( не только для острых, но и для тупых, положительных и отрицательных углов ), необходимо рассмотреть так называемый единичный круг, то есть круг, радиус которого равен 1 ( рис.3 ).
Проведём два диаметра: горизонтальный AA’ и вертикальный BB’. Будем отсчитывать углы от точки A ( начальная точка ). Отрицательные углы отсчитываются по часовой стрелке, положительные – против. Подвижный радиус OC образует угол с неподвижным радиусом OA. Он может быть расположен в 1-ой четверти ( COA ), во 2-ой четверти ( DOA ), в 3-ей четверти ( EOA ) или в 4-ой четверти ( FOA ). Считая OA и OB положительными направлениями, а OA’ и OB’ – отрицательными, мы определим тригонометрические функции следующим образом.

Линия синуса угла ( рис.4 ) - это вертикальный диаметр единичного круга, линия косинуса угла - горизонтальный диаметр единичного круга. Синус угла ( рис.4 ) – это отрезок OB на линии синуса, то есть проекция подвижного радиуса OK на линию синуса; косинус угла - отрезок OA линии косинуса, то есть проекция подвижного радиуса OK на линию косинуса. Знаки синуса и косинуса в различных четвертях единичного круга показаны на рис.5 и рис.6.
Линия тангенса ( рис.7 ) – это касательная к единичному кругу, проведенная через точку A горизонтального диаметра.
Линия котангенса ( рис.8 ) – это касательная к единичному кругу, проведенная через точку В вертикального диаметра.
Тангенс – это отрезок линии тангенса между точкой касания A и точкой пересечения ( D, E, и т.д., рис.7 ) линии тангенса и линии радиуса.
Котангенс – это отрезок линии котангенса между точкой касания В и точкой пересечения ( Р, Q, и т.д., рис.8 ) линии котангенса и линии радиуса.

Знаки тангенса и котангенса в различных четвертях единичного круга показаны на рис.9.
Секанс и косеканс
определяются как величины, обратные соответственно косинусу и синусу.

Комментарии (1)

Всего: 1 комментарий
#1 | Андрей Бузик »» | 03.09.2013 17:03
  
-2
Соотношения между тригонометрическими функциями одного и того же угла
Эти формулы являются основными тригонометрическими тождествами, то есть они верны для любого угла. Используя их, можно сократить и упростить процесс вычислений.
Добавлять комментарии могут только
зарегистрированные пользователи!
 
Имя или номер: Пароль:
Регистрация » Забыли пароль?
новый ролик 8 черная дыра 3 скорость света 3 алексей савватеев 6 любовь 80 видео 9 пространство 6 время 6 космология 4 материя 3 гравитационные волны 7 эфир 6 троица 77 бог 80 горизонт событий 4 ото 5 сто 12 чёрные дыры 3 будущее 3 искусственный интеллект 6 энтропия 3 космос 5 россия 4 сознание 3 алексей семихатов 3 вселенная 3 квантовая физика 4 электромагнетизм 3 лиго 4 эффект доплера 4 луна 3 комплексное запаздывание 3 разум 6 рассудок 3 ум 11 интернет 3 теория относительности 4 гравитация 5 ложность релятивизма 4 дети 3 энергия 3 благодать 4 математика 4 спасение 3 крест 3 дифракция 3 химия 5 воля 4 золотое сечение 3 марс 3 истина 5 классическая физика 4 майкельсон 3 преобразования лоренца 4 христос 4 логика 3 эфирный ветер 4 отец 4 святой дух 3 сын 4 вода 3 дух святой 3 иисус христос 12 путь 3 человек 6 гипотеза 3 наука 4 gps 3 квантовая механика 4 черные дыры 3 большой адронный коллайдер 4 решение 4 мир 3 история 3 физика 3 эксперименты 3 лечение рака в израиле 3 методы лечения рака в израиле 3 биография 4 история открытия 3 темная энергия 3 погрешность 3 метрология 3 измерения 5
 
© decoder.ru 2003 - 2023, создание портала - Vinchi Group & MySites
ЧИСТЫЙ ИНТЕРНЕТ - logoSlovo.RU